Wein's Displacement Law
The law states that the wavelength where the energy density is maximum. λmax and product of the T is a constant
$$λ_{max} T = 0.289 cm^1K$$
To find the maximum of u (v, T)
$$\frac{du}{dv}=\frac{8\pi h}{c^3}\left[\frac{v^3}{e^{\displaystyle\frac{h\nu}{kT}}-1}\right]$$
For u to be maximum $\frac{du}{dv}=0$
The above equation becomes
So,
$$3\nu^2\left(e^\frac{h\nu}{kT}-1\right)=\nu^3\frac h{kT}e^\frac{h\nu}{kT}$$
Let $$ \frac{h\nu}{kT}=\frac{hc}{\lambda kT}=x$$
The above equation become.
$$e^{-x}+\frac x5=1$$
A numerical solution gives $x=4.965 $
$λ_{max} T=\frac{hc}{ kT4.965}=0.288 cm^-1K$
This is the Wein’s displacement formula.